From 0af91ba32b4d7cc3a709e75575374b85e66005ad Mon Sep 17 00:00:00 2001 From: WAKAYAMA shirou Date: Fri, 12 Feb 2016 23:09:30 +0900 Subject: [PATCH] [disk,process]freebsd: binary.go moved to internal. --- disk/binary.go | 634 --------------------------------------------- disk/disk_freebsd.go | 2 +- internal/common/binary.go | 634 +++++++++++++++++++++++++++++++++++++++++++++ process/binary.go | 634 --------------------------------------------- process/process_freebsd.go | 2 +- 5 files changed, 636 insertions(+), 1270 deletions(-) delete mode 100644 disk/binary.go create mode 100644 internal/common/binary.go delete mode 100644 process/binary.go diff --git a/disk/binary.go b/disk/binary.go deleted file mode 100644 index 418e591..0000000 --- a/disk/binary.go +++ /dev/null @@ -1,634 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package binary implements simple translation between numbers and byte -// sequences and encoding and decoding of varints. -// -// Numbers are translated by reading and writing fixed-size values. -// A fixed-size value is either a fixed-size arithmetic -// type (int8, uint8, int16, float32, complex64, ...) -// or an array or struct containing only fixed-size values. -// -// The varint functions encode and decode single integer values using -// a variable-length encoding; smaller values require fewer bytes. -// For a specification, see -// http://code.google.com/apis/protocolbuffers/docs/encoding.html. -// -// This package favors simplicity over efficiency. Clients that require -// high-performance serialization, especially for large data structures, -// should look at more advanced solutions such as the encoding/gob -// package or protocol buffers. -package disk - -import ( - "errors" - "io" - "math" - "reflect" -) - -// A ByteOrder specifies how to convert byte sequences into -// 16-, 32-, or 64-bit unsigned integers. -type ByteOrder interface { - Uint16([]byte) uint16 - Uint32([]byte) uint32 - Uint64([]byte) uint64 - PutUint16([]byte, uint16) - PutUint32([]byte, uint32) - PutUint64([]byte, uint64) - String() string -} - -// LittleEndian is the little-endian implementation of ByteOrder. -var LittleEndian littleEndian - -// BigEndian is the big-endian implementation of ByteOrder. -var BigEndian bigEndian - -type littleEndian struct{} - -func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 } - -func (littleEndian) PutUint16(b []byte, v uint16) { - b[0] = byte(v) - b[1] = byte(v >> 8) -} - -func (littleEndian) Uint32(b []byte) uint32 { - return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 -} - -func (littleEndian) PutUint32(b []byte, v uint32) { - b[0] = byte(v) - b[1] = byte(v >> 8) - b[2] = byte(v >> 16) - b[3] = byte(v >> 24) -} - -func (littleEndian) Uint64(b []byte) uint64 { - return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | - uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 -} - -func (littleEndian) PutUint64(b []byte, v uint64) { - b[0] = byte(v) - b[1] = byte(v >> 8) - b[2] = byte(v >> 16) - b[3] = byte(v >> 24) - b[4] = byte(v >> 32) - b[5] = byte(v >> 40) - b[6] = byte(v >> 48) - b[7] = byte(v >> 56) -} - -func (littleEndian) String() string { return "LittleEndian" } - -func (littleEndian) GoString() string { return "binary.LittleEndian" } - -type bigEndian struct{} - -func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 } - -func (bigEndian) PutUint16(b []byte, v uint16) { - b[0] = byte(v >> 8) - b[1] = byte(v) -} - -func (bigEndian) Uint32(b []byte) uint32 { - return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 -} - -func (bigEndian) PutUint32(b []byte, v uint32) { - b[0] = byte(v >> 24) - b[1] = byte(v >> 16) - b[2] = byte(v >> 8) - b[3] = byte(v) -} - -func (bigEndian) Uint64(b []byte) uint64 { - return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | - uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 -} - -func (bigEndian) PutUint64(b []byte, v uint64) { - b[0] = byte(v >> 56) - b[1] = byte(v >> 48) - b[2] = byte(v >> 40) - b[3] = byte(v >> 32) - b[4] = byte(v >> 24) - b[5] = byte(v >> 16) - b[6] = byte(v >> 8) - b[7] = byte(v) -} - -func (bigEndian) String() string { return "BigEndian" } - -func (bigEndian) GoString() string { return "binary.BigEndian" } - -// Read reads structured binary data from r into data. -// Data must be a pointer to a fixed-size value or a slice -// of fixed-size values. -// Bytes read from r are decoded using the specified byte order -// and written to successive fields of the data. -// When reading into structs, the field data for fields with -// blank (_) field names is skipped; i.e., blank field names -// may be used for padding. -// When reading into a struct, all non-blank fields must be exported. -func Read(r io.Reader, order ByteOrder, data interface{}) error { - // Fast path for basic types and slices. - if n := intDataSize(data); n != 0 { - var b [8]byte - var bs []byte - if n > len(b) { - bs = make([]byte, n) - } else { - bs = b[:n] - } - if _, err := io.ReadFull(r, bs); err != nil { - return err - } - switch data := data.(type) { - case *int8: - *data = int8(b[0]) - case *uint8: - *data = b[0] - case *int16: - *data = int16(order.Uint16(bs)) - case *uint16: - *data = order.Uint16(bs) - case *int32: - *data = int32(order.Uint32(bs)) - case *uint32: - *data = order.Uint32(bs) - case *int64: - *data = int64(order.Uint64(bs)) - case *uint64: - *data = order.Uint64(bs) - case []int8: - for i, x := range bs { // Easier to loop over the input for 8-bit values. - data[i] = int8(x) - } - case []uint8: - copy(data, bs) - case []int16: - for i := range data { - data[i] = int16(order.Uint16(bs[2*i:])) - } - case []uint16: - for i := range data { - data[i] = order.Uint16(bs[2*i:]) - } - case []int32: - for i := range data { - data[i] = int32(order.Uint32(bs[4*i:])) - } - case []uint32: - for i := range data { - data[i] = order.Uint32(bs[4*i:]) - } - case []int64: - for i := range data { - data[i] = int64(order.Uint64(bs[8*i:])) - } - case []uint64: - for i := range data { - data[i] = order.Uint64(bs[8*i:]) - } - } - return nil - } - - // Fallback to reflect-based decoding. - v := reflect.ValueOf(data) - size := -1 - switch v.Kind() { - case reflect.Ptr: - v = v.Elem() - size = dataSize(v) - case reflect.Slice: - size = dataSize(v) - } - if size < 0 { - return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String()) - } - d := &decoder{order: order, buf: make([]byte, size)} - if _, err := io.ReadFull(r, d.buf); err != nil { - return err - } - d.value(v) - return nil -} - -// Write writes the binary representation of data into w. -// Data must be a fixed-size value or a slice of fixed-size -// values, or a pointer to such data. -// Bytes written to w are encoded using the specified byte order -// and read from successive fields of the data. -// When writing structs, zero values are written for fields -// with blank (_) field names. -func Write(w io.Writer, order ByteOrder, data interface{}) error { - // Fast path for basic types and slices. - if n := intDataSize(data); n != 0 { - var b [8]byte - var bs []byte - if n > len(b) { - bs = make([]byte, n) - } else { - bs = b[:n] - } - switch v := data.(type) { - case *int8: - bs = b[:1] - b[0] = byte(*v) - case int8: - bs = b[:1] - b[0] = byte(v) - case []int8: - for i, x := range v { - bs[i] = byte(x) - } - case *uint8: - bs = b[:1] - b[0] = *v - case uint8: - bs = b[:1] - b[0] = byte(v) - case []uint8: - bs = v - case *int16: - bs = b[:2] - order.PutUint16(bs, uint16(*v)) - case int16: - bs = b[:2] - order.PutUint16(bs, uint16(v)) - case []int16: - for i, x := range v { - order.PutUint16(bs[2*i:], uint16(x)) - } - case *uint16: - bs = b[:2] - order.PutUint16(bs, *v) - case uint16: - bs = b[:2] - order.PutUint16(bs, v) - case []uint16: - for i, x := range v { - order.PutUint16(bs[2*i:], x) - } - case *int32: - bs = b[:4] - order.PutUint32(bs, uint32(*v)) - case int32: - bs = b[:4] - order.PutUint32(bs, uint32(v)) - case []int32: - for i, x := range v { - order.PutUint32(bs[4*i:], uint32(x)) - } - case *uint32: - bs = b[:4] - order.PutUint32(bs, *v) - case uint32: - bs = b[:4] - order.PutUint32(bs, v) - case []uint32: - for i, x := range v { - order.PutUint32(bs[4*i:], x) - } - case *int64: - bs = b[:8] - order.PutUint64(bs, uint64(*v)) - case int64: - bs = b[:8] - order.PutUint64(bs, uint64(v)) - case []int64: - for i, x := range v { - order.PutUint64(bs[8*i:], uint64(x)) - } - case *uint64: - bs = b[:8] - order.PutUint64(bs, *v) - case uint64: - bs = b[:8] - order.PutUint64(bs, v) - case []uint64: - for i, x := range v { - order.PutUint64(bs[8*i:], x) - } - } - _, err := w.Write(bs) - return err - } - - // Fallback to reflect-based encoding. - v := reflect.Indirect(reflect.ValueOf(data)) - size := dataSize(v) - if size < 0 { - return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String()) - } - buf := make([]byte, size) - e := &encoder{order: order, buf: buf} - e.value(v) - _, err := w.Write(buf) - return err -} - -// Size returns how many bytes Write would generate to encode the value v, which -// must be a fixed-size value or a slice of fixed-size values, or a pointer to such data. -// If v is neither of these, Size returns -1. -func Size(v interface{}) int { - return dataSize(reflect.Indirect(reflect.ValueOf(v))) -} - -// dataSize returns the number of bytes the actual data represented by v occupies in memory. -// For compound structures, it sums the sizes of the elements. Thus, for instance, for a slice -// it returns the length of the slice times the element size and does not count the memory -// occupied by the header. If the type of v is not acceptable, dataSize returns -1. -func dataSize(v reflect.Value) int { - if v.Kind() == reflect.Slice { - if s := sizeof(v.Type().Elem()); s >= 0 { - return s * v.Len() - } - return -1 - } - return sizeof(v.Type()) -} - -// sizeof returns the size >= 0 of variables for the given type or -1 if the type is not acceptable. -func sizeof(t reflect.Type) int { - switch t.Kind() { - case reflect.Array: - if s := sizeof(t.Elem()); s >= 0 { - return s * t.Len() - } - - case reflect.Struct: - sum := 0 - for i, n := 0, t.NumField(); i < n; i++ { - s := sizeof(t.Field(i).Type) - if s < 0 { - return -1 - } - sum += s - } - return sum - - case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, - reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, - reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.Ptr: - return int(t.Size()) - } - - return -1 -} - -type coder struct { - order ByteOrder - buf []byte -} - -type decoder coder -type encoder coder - -func (d *decoder) uint8() uint8 { - x := d.buf[0] - d.buf = d.buf[1:] - return x -} - -func (e *encoder) uint8(x uint8) { - e.buf[0] = x - e.buf = e.buf[1:] -} - -func (d *decoder) uint16() uint16 { - x := d.order.Uint16(d.buf[0:2]) - d.buf = d.buf[2:] - return x -} - -func (e *encoder) uint16(x uint16) { - e.order.PutUint16(e.buf[0:2], x) - e.buf = e.buf[2:] -} - -func (d *decoder) uint32() uint32 { - x := d.order.Uint32(d.buf[0:4]) - d.buf = d.buf[4:] - return x -} - -func (e *encoder) uint32(x uint32) { - e.order.PutUint32(e.buf[0:4], x) - e.buf = e.buf[4:] -} - -func (d *decoder) uint64() uint64 { - x := d.order.Uint64(d.buf[0:8]) - d.buf = d.buf[8:] - return x -} - -func (e *encoder) uint64(x uint64) { - e.order.PutUint64(e.buf[0:8], x) - e.buf = e.buf[8:] -} - -func (d *decoder) int8() int8 { return int8(d.uint8()) } - -func (e *encoder) int8(x int8) { e.uint8(uint8(x)) } - -func (d *decoder) int16() int16 { return int16(d.uint16()) } - -func (e *encoder) int16(x int16) { e.uint16(uint16(x)) } - -func (d *decoder) int32() int32 { return int32(d.uint32()) } - -func (e *encoder) int32(x int32) { e.uint32(uint32(x)) } - -func (d *decoder) int64() int64 { return int64(d.uint64()) } - -func (e *encoder) int64(x int64) { e.uint64(uint64(x)) } - -func (d *decoder) value(v reflect.Value) { - switch v.Kind() { - case reflect.Array: - l := v.Len() - for i := 0; i < l; i++ { - d.value(v.Index(i)) - } - - case reflect.Struct: - t := v.Type() - l := v.NumField() - for i := 0; i < l; i++ { - // Note: Calling v.CanSet() below is an optimization. - // It would be sufficient to check the field name, - // but creating the StructField info for each field is - // costly (run "go test -bench=ReadStruct" and compare - // results when making changes to this code). - if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" { - d.value(v) - } else { - d.skip(v) - } - } - - case reflect.Slice: - l := v.Len() - for i := 0; i < l; i++ { - d.value(v.Index(i)) - } - - case reflect.Int8: - v.SetInt(int64(d.int8())) - case reflect.Int16: - v.SetInt(int64(d.int16())) - case reflect.Int32: - v.SetInt(int64(d.int32())) - case reflect.Int64: - v.SetInt(d.int64()) - - case reflect.Uint8: - v.SetUint(uint64(d.uint8())) - case reflect.Uint16: - v.SetUint(uint64(d.uint16())) - case reflect.Uint32: - v.SetUint(uint64(d.uint32())) - case reflect.Uint64: - v.SetUint(d.uint64()) - - case reflect.Float32: - v.SetFloat(float64(math.Float32frombits(d.uint32()))) - case reflect.Float64: - v.SetFloat(math.Float64frombits(d.uint64())) - - case reflect.Complex64: - v.SetComplex(complex( - float64(math.Float32frombits(d.uint32())), - float64(math.Float32frombits(d.uint32())), - )) - case reflect.Complex128: - v.SetComplex(complex( - math.Float64frombits(d.uint64()), - math.Float64frombits(d.uint64()), - )) - } -} - -func (e *encoder) value(v reflect.Value) { - switch v.Kind() { - case reflect.Array: - l := v.Len() - for i := 0; i < l; i++ { - e.value(v.Index(i)) - } - - case reflect.Struct: - t := v.Type() - l := v.NumField() - for i := 0; i < l; i++ { - // see comment for corresponding code in decoder.value() - if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" { - e.value(v) - } else { - e.skip(v) - } - } - - case reflect.Slice: - l := v.Len() - for i := 0; i < l; i++ { - e.value(v.Index(i)) - } - - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - switch v.Type().Kind() { - case reflect.Int8: - e.int8(int8(v.Int())) - case reflect.Int16: - e.int16(int16(v.Int())) - case reflect.Int32: - e.int32(int32(v.Int())) - case reflect.Int64: - e.int64(v.Int()) - } - - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - switch v.Type().Kind() { - case reflect.Uint8: - e.uint8(uint8(v.Uint())) - case reflect.Uint16: - e.uint16(uint16(v.Uint())) - case reflect.Uint32: - e.uint32(uint32(v.Uint())) - case reflect.Uint64: - e.uint64(v.Uint()) - } - - case reflect.Float32, reflect.Float64: - switch v.Type().Kind() { - case reflect.Float32: - e.uint32(math.Float32bits(float32(v.Float()))) - case reflect.Float64: - e.uint64(math.Float64bits(v.Float())) - } - - case reflect.Complex64, reflect.Complex128: - switch v.Type().Kind() { - case reflect.Complex64: - x := v.Complex() - e.uint32(math.Float32bits(float32(real(x)))) - e.uint32(math.Float32bits(float32(imag(x)))) - case reflect.Complex128: - x := v.Complex() - e.uint64(math.Float64bits(real(x))) - e.uint64(math.Float64bits(imag(x))) - } - } -} - -func (d *decoder) skip(v reflect.Value) { - d.buf = d.buf[dataSize(v):] -} - -func (e *encoder) skip(v reflect.Value) { - n := dataSize(v) - for i := range e.buf[0:n] { - e.buf[i] = 0 - } - e.buf = e.buf[n:] -} - -// intDataSize returns the size of the data required to represent the data when encoded. -// It returns zero if the type cannot be implemented by the fast path in Read or Write. -func intDataSize(data interface{}) int { - switch data := data.(type) { - case int8, *int8, *uint8: - return 1 - case []int8: - return len(data) - case []uint8: - return len(data) - case int16, *int16, *uint16: - return 2 - case []int16: - return 2 * len(data) - case []uint16: - return 2 * len(data) - case int32, *int32, *uint32: - return 4 - case []int32: - return 4 * len(data) - case []uint32: - return 4 * len(data) - case int64, *int64, *uint64: - return 8 - case []int64: - return 8 * len(data) - case []uint64: - return 8 * len(data) - } - return 0 -} diff --git a/disk/disk_freebsd.go b/disk/disk_freebsd.go index efec201..24549b7 100644 --- a/disk/disk_freebsd.go +++ b/disk/disk_freebsd.go @@ -157,7 +157,7 @@ func parseDevstat(buf []byte) (Devstat, error) { var ds Devstat br := bytes.NewReader(buf) // err := binary.Read(br, binary.LittleEndian, &ds) - err := Read(br, binary.LittleEndian, &ds) + err := common.Read(br, binary.LittleEndian, &ds) if err != nil { return ds, err } diff --git a/internal/common/binary.go b/internal/common/binary.go new file mode 100644 index 0000000..60962e6 --- /dev/null +++ b/internal/common/binary.go @@ -0,0 +1,634 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package binary implements simple translation between numbers and byte +// sequences and encoding and decoding of varints. +// +// Numbers are translated by reading and writing fixed-size values. +// A fixed-size value is either a fixed-size arithmetic +// type (int8, uint8, int16, float32, complex64, ...) +// or an array or struct containing only fixed-size values. +// +// The varint functions encode and decode single integer values using +// a variable-length encoding; smaller values require fewer bytes. +// For a specification, see +// http://code.google.com/apis/protocolbuffers/docs/encoding.html. +// +// This package favors simplicity over efficiency. Clients that require +// high-performance serialization, especially for large data structures, +// should look at more advanced solutions such as the encoding/gob +// package or protocol buffers. +package common + +import ( + "errors" + "io" + "math" + "reflect" +) + +// A ByteOrder specifies how to convert byte sequences into +// 16-, 32-, or 64-bit unsigned integers. +type ByteOrder interface { + Uint16([]byte) uint16 + Uint32([]byte) uint32 + Uint64([]byte) uint64 + PutUint16([]byte, uint16) + PutUint32([]byte, uint32) + PutUint64([]byte, uint64) + String() string +} + +// LittleEndian is the little-endian implementation of ByteOrder. +var LittleEndian littleEndian + +// BigEndian is the big-endian implementation of ByteOrder. +var BigEndian bigEndian + +type littleEndian struct{} + +func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 } + +func (littleEndian) PutUint16(b []byte, v uint16) { + b[0] = byte(v) + b[1] = byte(v >> 8) +} + +func (littleEndian) Uint32(b []byte) uint32 { + return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 +} + +func (littleEndian) PutUint32(b []byte, v uint32) { + b[0] = byte(v) + b[1] = byte(v >> 8) + b[2] = byte(v >> 16) + b[3] = byte(v >> 24) +} + +func (littleEndian) Uint64(b []byte) uint64 { + return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | + uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 +} + +func (littleEndian) PutUint64(b []byte, v uint64) { + b[0] = byte(v) + b[1] = byte(v >> 8) + b[2] = byte(v >> 16) + b[3] = byte(v >> 24) + b[4] = byte(v >> 32) + b[5] = byte(v >> 40) + b[6] = byte(v >> 48) + b[7] = byte(v >> 56) +} + +func (littleEndian) String() string { return "LittleEndian" } + +func (littleEndian) GoString() string { return "binary.LittleEndian" } + +type bigEndian struct{} + +func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 } + +func (bigEndian) PutUint16(b []byte, v uint16) { + b[0] = byte(v >> 8) + b[1] = byte(v) +} + +func (bigEndian) Uint32(b []byte) uint32 { + return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 +} + +func (bigEndian) PutUint32(b []byte, v uint32) { + b[0] = byte(v >> 24) + b[1] = byte(v >> 16) + b[2] = byte(v >> 8) + b[3] = byte(v) +} + +func (bigEndian) Uint64(b []byte) uint64 { + return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | + uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 +} + +func (bigEndian) PutUint64(b []byte, v uint64) { + b[0] = byte(v >> 56) + b[1] = byte(v >> 48) + b[2] = byte(v >> 40) + b[3] = byte(v >> 32) + b[4] = byte(v >> 24) + b[5] = byte(v >> 16) + b[6] = byte(v >> 8) + b[7] = byte(v) +} + +func (bigEndian) String() string { return "BigEndian" } + +func (bigEndian) GoString() string { return "binary.BigEndian" } + +// Read reads structured binary data from r into data. +// Data must be a pointer to a fixed-size value or a slice +// of fixed-size values. +// Bytes read from r are decoded using the specified byte order +// and written to successive fields of the data. +// When reading into structs, the field data for fields with +// blank (_) field names is skipped; i.e., blank field names +// may be used for padding. +// When reading into a struct, all non-blank fields must be exported. +func Read(r io.Reader, order ByteOrder, data interface{}) error { + // Fast path for basic types and slices. + if n := intDataSize(data); n != 0 { + var b [8]byte + var bs []byte + if n > len(b) { + bs = make([]byte, n) + } else { + bs = b[:n] + } + if _, err := io.ReadFull(r, bs); err != nil { + return err + } + switch data := data.(type) { + case *int8: + *data = int8(b[0]) + case *uint8: + *data = b[0] + case *int16: + *data = int16(order.Uint16(bs)) + case *uint16: + *data = order.Uint16(bs) + case *int32: + *data = int32(order.Uint32(bs)) + case *uint32: + *data = order.Uint32(bs) + case *int64: + *data = int64(order.Uint64(bs)) + case *uint64: + *data = order.Uint64(bs) + case []int8: + for i, x := range bs { // Easier to loop over the input for 8-bit values. + data[i] = int8(x) + } + case []uint8: + copy(data, bs) + case []int16: + for i := range data { + data[i] = int16(order.Uint16(bs[2*i:])) + } + case []uint16: + for i := range data { + data[i] = order.Uint16(bs[2*i:]) + } + case []int32: + for i := range data { + data[i] = int32(order.Uint32(bs[4*i:])) + } + case []uint32: + for i := range data { + data[i] = order.Uint32(bs[4*i:]) + } + case []int64: + for i := range data { + data[i] = int64(order.Uint64(bs[8*i:])) + } + case []uint64: + for i := range data { + data[i] = order.Uint64(bs[8*i:]) + } + } + return nil + } + + // Fallback to reflect-based decoding. + v := reflect.ValueOf(data) + size := -1 + switch v.Kind() { + case reflect.Ptr: + v = v.Elem() + size = dataSize(v) + case reflect.Slice: + size = dataSize(v) + } + if size < 0 { + return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String()) + } + d := &decoder{order: order, buf: make([]byte, size)} + if _, err := io.ReadFull(r, d.buf); err != nil { + return err + } + d.value(v) + return nil +} + +// Write writes the binary representation of data into w. +// Data must be a fixed-size value or a slice of fixed-size +// values, or a pointer to such data. +// Bytes written to w are encoded using the specified byte order +// and read from successive fields of the data. +// When writing structs, zero values are written for fields +// with blank (_) field names. +func Write(w io.Writer, order ByteOrder, data interface{}) error { + // Fast path for basic types and slices. + if n := intDataSize(data); n != 0 { + var b [8]byte + var bs []byte + if n > len(b) { + bs = make([]byte, n) + } else { + bs = b[:n] + } + switch v := data.(type) { + case *int8: + bs = b[:1] + b[0] = byte(*v) + case int8: + bs = b[:1] + b[0] = byte(v) + case []int8: + for i, x := range v { + bs[i] = byte(x) + } + case *uint8: + bs = b[:1] + b[0] = *v + case uint8: + bs = b[:1] + b[0] = byte(v) + case []uint8: + bs = v + case *int16: + bs = b[:2] + order.PutUint16(bs, uint16(*v)) + case int16: + bs = b[:2] + order.PutUint16(bs, uint16(v)) + case []int16: + for i, x := range v { + order.PutUint16(bs[2*i:], uint16(x)) + } + case *uint16: + bs = b[:2] + order.PutUint16(bs, *v) + case uint16: + bs = b[:2] + order.PutUint16(bs, v) + case []uint16: + for i, x := range v { + order.PutUint16(bs[2*i:], x) + } + case *int32: + bs = b[:4] + order.PutUint32(bs, uint32(*v)) + case int32: + bs = b[:4] + order.PutUint32(bs, uint32(v)) + case []int32: + for i, x := range v { + order.PutUint32(bs[4*i:], uint32(x)) + } + case *uint32: + bs = b[:4] + order.PutUint32(bs, *v) + case uint32: + bs = b[:4] + order.PutUint32(bs, v) + case []uint32: + for i, x := range v { + order.PutUint32(bs[4*i:], x) + } + case *int64: + bs = b[:8] + order.PutUint64(bs, uint64(*v)) + case int64: + bs = b[:8] + order.PutUint64(bs, uint64(v)) + case []int64: + for i, x := range v { + order.PutUint64(bs[8*i:], uint64(x)) + } + case *uint64: + bs = b[:8] + order.PutUint64(bs, *v) + case uint64: + bs = b[:8] + order.PutUint64(bs, v) + case []uint64: + for i, x := range v { + order.PutUint64(bs[8*i:], x) + } + } + _, err := w.Write(bs) + return err + } + + // Fallback to reflect-based encoding. + v := reflect.Indirect(reflect.ValueOf(data)) + size := dataSize(v) + if size < 0 { + return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String()) + } + buf := make([]byte, size) + e := &encoder{order: order, buf: buf} + e.value(v) + _, err := w.Write(buf) + return err +} + +// Size returns how many bytes Write would generate to encode the value v, which +// must be a fixed-size value or a slice of fixed-size values, or a pointer to such data. +// If v is neither of these, Size returns -1. +func Size(v interface{}) int { + return dataSize(reflect.Indirect(reflect.ValueOf(v))) +} + +// dataSize returns the number of bytes the actual data represented by v occupies in memory. +// For compound structures, it sums the sizes of the elements. Thus, for instance, for a slice +// it returns the length of the slice times the element size and does not count the memory +// occupied by the header. If the type of v is not acceptable, dataSize returns -1. +func dataSize(v reflect.Value) int { + if v.Kind() == reflect.Slice { + if s := sizeof(v.Type().Elem()); s >= 0 { + return s * v.Len() + } + return -1 + } + return sizeof(v.Type()) +} + +// sizeof returns the size >= 0 of variables for the given type or -1 if the type is not acceptable. +func sizeof(t reflect.Type) int { + switch t.Kind() { + case reflect.Array: + if s := sizeof(t.Elem()); s >= 0 { + return s * t.Len() + } + + case reflect.Struct: + sum := 0 + for i, n := 0, t.NumField(); i < n; i++ { + s := sizeof(t.Field(i).Type) + if s < 0 { + return -1 + } + sum += s + } + return sum + + case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, + reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, + reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.Ptr: + return int(t.Size()) + } + + return -1 +} + +type coder struct { + order ByteOrder + buf []byte +} + +type decoder coder +type encoder coder + +func (d *decoder) uint8() uint8 { + x := d.buf[0] + d.buf = d.buf[1:] + return x +} + +func (e *encoder) uint8(x uint8) { + e.buf[0] = x + e.buf = e.buf[1:] +} + +func (d *decoder) uint16() uint16 { + x := d.order.Uint16(d.buf[0:2]) + d.buf = d.buf[2:] + return x +} + +func (e *encoder) uint16(x uint16) { + e.order.PutUint16(e.buf[0:2], x) + e.buf = e.buf[2:] +} + +func (d *decoder) uint32() uint32 { + x := d.order.Uint32(d.buf[0:4]) + d.buf = d.buf[4:] + return x +} + +func (e *encoder) uint32(x uint32) { + e.order.PutUint32(e.buf[0:4], x) + e.buf = e.buf[4:] +} + +func (d *decoder) uint64() uint64 { + x := d.order.Uint64(d.buf[0:8]) + d.buf = d.buf[8:] + return x +} + +func (e *encoder) uint64(x uint64) { + e.order.PutUint64(e.buf[0:8], x) + e.buf = e.buf[8:] +} + +func (d *decoder) int8() int8 { return int8(d.uint8()) } + +func (e *encoder) int8(x int8) { e.uint8(uint8(x)) } + +func (d *decoder) int16() int16 { return int16(d.uint16()) } + +func (e *encoder) int16(x int16) { e.uint16(uint16(x)) } + +func (d *decoder) int32() int32 { return int32(d.uint32()) } + +func (e *encoder) int32(x int32) { e.uint32(uint32(x)) } + +func (d *decoder) int64() int64 { return int64(d.uint64()) } + +func (e *encoder) int64(x int64) { e.uint64(uint64(x)) } + +func (d *decoder) value(v reflect.Value) { + switch v.Kind() { + case reflect.Array: + l := v.Len() + for i := 0; i < l; i++ { + d.value(v.Index(i)) + } + + case reflect.Struct: + t := v.Type() + l := v.NumField() + for i := 0; i < l; i++ { + // Note: Calling v.CanSet() below is an optimization. + // It would be sufficient to check the field name, + // but creating the StructField info for each field is + // costly (run "go test -bench=ReadStruct" and compare + // results when making changes to this code). + if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" { + d.value(v) + } else { + d.skip(v) + } + } + + case reflect.Slice: + l := v.Len() + for i := 0; i < l; i++ { + d.value(v.Index(i)) + } + + case reflect.Int8: + v.SetInt(int64(d.int8())) + case reflect.Int16: + v.SetInt(int64(d.int16())) + case reflect.Int32: + v.SetInt(int64(d.int32())) + case reflect.Int64: + v.SetInt(d.int64()) + + case reflect.Uint8: + v.SetUint(uint64(d.uint8())) + case reflect.Uint16: + v.SetUint(uint64(d.uint16())) + case reflect.Uint32: + v.SetUint(uint64(d.uint32())) + case reflect.Uint64: + v.SetUint(d.uint64()) + + case reflect.Float32: + v.SetFloat(float64(math.Float32frombits(d.uint32()))) + case reflect.Float64: + v.SetFloat(math.Float64frombits(d.uint64())) + + case reflect.Complex64: + v.SetComplex(complex( + float64(math.Float32frombits(d.uint32())), + float64(math.Float32frombits(d.uint32())), + )) + case reflect.Complex128: + v.SetComplex(complex( + math.Float64frombits(d.uint64()), + math.Float64frombits(d.uint64()), + )) + } +} + +func (e *encoder) value(v reflect.Value) { + switch v.Kind() { + case reflect.Array: + l := v.Len() + for i := 0; i < l; i++ { + e.value(v.Index(i)) + } + + case reflect.Struct: + t := v.Type() + l := v.NumField() + for i := 0; i < l; i++ { + // see comment for corresponding code in decoder.value() + if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" { + e.value(v) + } else { + e.skip(v) + } + } + + case reflect.Slice: + l := v.Len() + for i := 0; i < l; i++ { + e.value(v.Index(i)) + } + + case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: + switch v.Type().Kind() { + case reflect.Int8: + e.int8(int8(v.Int())) + case reflect.Int16: + e.int16(int16(v.Int())) + case reflect.Int32: + e.int32(int32(v.Int())) + case reflect.Int64: + e.int64(v.Int()) + } + + case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: + switch v.Type().Kind() { + case reflect.Uint8: + e.uint8(uint8(v.Uint())) + case reflect.Uint16: + e.uint16(uint16(v.Uint())) + case reflect.Uint32: + e.uint32(uint32(v.Uint())) + case reflect.Uint64: + e.uint64(v.Uint()) + } + + case reflect.Float32, reflect.Float64: + switch v.Type().Kind() { + case reflect.Float32: + e.uint32(math.Float32bits(float32(v.Float()))) + case reflect.Float64: + e.uint64(math.Float64bits(v.Float())) + } + + case reflect.Complex64, reflect.Complex128: + switch v.Type().Kind() { + case reflect.Complex64: + x := v.Complex() + e.uint32(math.Float32bits(float32(real(x)))) + e.uint32(math.Float32bits(float32(imag(x)))) + case reflect.Complex128: + x := v.Complex() + e.uint64(math.Float64bits(real(x))) + e.uint64(math.Float64bits(imag(x))) + } + } +} + +func (d *decoder) skip(v reflect.Value) { + d.buf = d.buf[dataSize(v):] +} + +func (e *encoder) skip(v reflect.Value) { + n := dataSize(v) + for i := range e.buf[0:n] { + e.buf[i] = 0 + } + e.buf = e.buf[n:] +} + +// intDataSize returns the size of the data required to represent the data when encoded. +// It returns zero if the type cannot be implemented by the fast path in Read or Write. +func intDataSize(data interface{}) int { + switch data := data.(type) { + case int8, *int8, *uint8: + return 1 + case []int8: + return len(data) + case []uint8: + return len(data) + case int16, *int16, *uint16: + return 2 + case []int16: + return 2 * len(data) + case []uint16: + return 2 * len(data) + case int32, *int32, *uint32: + return 4 + case []int32: + return 4 * len(data) + case []uint32: + return 4 * len(data) + case int64, *int64, *uint64: + return 8 + case []int64: + return 8 * len(data) + case []uint64: + return 8 * len(data) + } + return 0 +} diff --git a/process/binary.go b/process/binary.go deleted file mode 100644 index 8891f0f..0000000 --- a/process/binary.go +++ /dev/null @@ -1,634 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package binary implements simple translation between numbers and byte -// sequences and encoding and decoding of varints. -// -// Numbers are translated by reading and writing fixed-size values. -// A fixed-size value is either a fixed-size arithmetic -// type (int8, uint8, int16, float32, complex64, ...) -// or an array or struct containing only fixed-size values. -// -// The varint functions encode and decode single integer values using -// a variable-length encoding; smaller values require fewer bytes. -// For a specification, see -// http://code.google.com/apis/protocolbuffers/docs/encoding.html. -// -// This package favors simplicity over efficiency. Clients that require -// high-performance serialization, especially for large data structures, -// should look at more advanced solutions such as the encoding/gob -// package or protocol buffers. -package process - -import ( - "errors" - "io" - "math" - "reflect" -) - -// A ByteOrder specifies how to convert byte sequences into -// 16-, 32-, or 64-bit unsigned integers. -type ByteOrder interface { - Uint16([]byte) uint16 - Uint32([]byte) uint32 - Uint64([]byte) uint64 - PutUint16([]byte, uint16) - PutUint32([]byte, uint32) - PutUint64([]byte, uint64) - String() string -} - -// LittleEndian is the little-endian implementation of ByteOrder. -var LittleEndian littleEndian - -// BigEndian is the big-endian implementation of ByteOrder. -var BigEndian bigEndian - -type littleEndian struct{} - -func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 } - -func (littleEndian) PutUint16(b []byte, v uint16) { - b[0] = byte(v) - b[1] = byte(v >> 8) -} - -func (littleEndian) Uint32(b []byte) uint32 { - return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 -} - -func (littleEndian) PutUint32(b []byte, v uint32) { - b[0] = byte(v) - b[1] = byte(v >> 8) - b[2] = byte(v >> 16) - b[3] = byte(v >> 24) -} - -func (littleEndian) Uint64(b []byte) uint64 { - return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | - uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 -} - -func (littleEndian) PutUint64(b []byte, v uint64) { - b[0] = byte(v) - b[1] = byte(v >> 8) - b[2] = byte(v >> 16) - b[3] = byte(v >> 24) - b[4] = byte(v >> 32) - b[5] = byte(v >> 40) - b[6] = byte(v >> 48) - b[7] = byte(v >> 56) -} - -func (littleEndian) String() string { return "LittleEndian" } - -func (littleEndian) GoString() string { return "binary.LittleEndian" } - -type bigEndian struct{} - -func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 } - -func (bigEndian) PutUint16(b []byte, v uint16) { - b[0] = byte(v >> 8) - b[1] = byte(v) -} - -func (bigEndian) Uint32(b []byte) uint32 { - return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 -} - -func (bigEndian) PutUint32(b []byte, v uint32) { - b[0] = byte(v >> 24) - b[1] = byte(v >> 16) - b[2] = byte(v >> 8) - b[3] = byte(v) -} - -func (bigEndian) Uint64(b []byte) uint64 { - return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | - uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 -} - -func (bigEndian) PutUint64(b []byte, v uint64) { - b[0] = byte(v >> 56) - b[1] = byte(v >> 48) - b[2] = byte(v >> 40) - b[3] = byte(v >> 32) - b[4] = byte(v >> 24) - b[5] = byte(v >> 16) - b[6] = byte(v >> 8) - b[7] = byte(v) -} - -func (bigEndian) String() string { return "BigEndian" } - -func (bigEndian) GoString() string { return "binary.BigEndian" } - -// Read reads structured binary data from r into data. -// Data must be a pointer to a fixed-size value or a slice -// of fixed-size values. -// Bytes read from r are decoded using the specified byte order -// and written to successive fields of the data. -// When reading into structs, the field data for fields with -// blank (_) field names is skipped; i.e., blank field names -// may be used for padding. -// When reading into a struct, all non-blank fields must be exported. -func Read(r io.Reader, order ByteOrder, data interface{}) error { - // Fast path for basic types and slices. - if n := intDataSize(data); n != 0 { - var b [8]byte - var bs []byte - if n > len(b) { - bs = make([]byte, n) - } else { - bs = b[:n] - } - if _, err := io.ReadFull(r, bs); err != nil { - return err - } - switch data := data.(type) { - case *int8: - *data = int8(b[0]) - case *uint8: - *data = b[0] - case *int16: - *data = int16(order.Uint16(bs)) - case *uint16: - *data = order.Uint16(bs) - case *int32: - *data = int32(order.Uint32(bs)) - case *uint32: - *data = order.Uint32(bs) - case *int64: - *data = int64(order.Uint64(bs)) - case *uint64: - *data = order.Uint64(bs) - case []int8: - for i, x := range bs { // Easier to loop over the input for 8-bit values. - data[i] = int8(x) - } - case []uint8: - copy(data, bs) - case []int16: - for i := range data { - data[i] = int16(order.Uint16(bs[2*i:])) - } - case []uint16: - for i := range data { - data[i] = order.Uint16(bs[2*i:]) - } - case []int32: - for i := range data { - data[i] = int32(order.Uint32(bs[4*i:])) - } - case []uint32: - for i := range data { - data[i] = order.Uint32(bs[4*i:]) - } - case []int64: - for i := range data { - data[i] = int64(order.Uint64(bs[8*i:])) - } - case []uint64: - for i := range data { - data[i] = order.Uint64(bs[8*i:]) - } - } - return nil - } - - // Fallback to reflect-based decoding. - v := reflect.ValueOf(data) - size := -1 - switch v.Kind() { - case reflect.Ptr: - v = v.Elem() - size = dataSize(v) - case reflect.Slice: - size = dataSize(v) - } - if size < 0 { - return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String()) - } - d := &decoder{order: order, buf: make([]byte, size)} - if _, err := io.ReadFull(r, d.buf); err != nil { - return err - } - d.value(v) - return nil -} - -// Write writes the binary representation of data into w. -// Data must be a fixed-size value or a slice of fixed-size -// values, or a pointer to such data. -// Bytes written to w are encoded using the specified byte order -// and read from successive fields of the data. -// When writing structs, zero values are written for fields -// with blank (_) field names. -func Write(w io.Writer, order ByteOrder, data interface{}) error { - // Fast path for basic types and slices. - if n := intDataSize(data); n != 0 { - var b [8]byte - var bs []byte - if n > len(b) { - bs = make([]byte, n) - } else { - bs = b[:n] - } - switch v := data.(type) { - case *int8: - bs = b[:1] - b[0] = byte(*v) - case int8: - bs = b[:1] - b[0] = byte(v) - case []int8: - for i, x := range v { - bs[i] = byte(x) - } - case *uint8: - bs = b[:1] - b[0] = *v - case uint8: - bs = b[:1] - b[0] = byte(v) - case []uint8: - bs = v - case *int16: - bs = b[:2] - order.PutUint16(bs, uint16(*v)) - case int16: - bs = b[:2] - order.PutUint16(bs, uint16(v)) - case []int16: - for i, x := range v { - order.PutUint16(bs[2*i:], uint16(x)) - } - case *uint16: - bs = b[:2] - order.PutUint16(bs, *v) - case uint16: - bs = b[:2] - order.PutUint16(bs, v) - case []uint16: - for i, x := range v { - order.PutUint16(bs[2*i:], x) - } - case *int32: - bs = b[:4] - order.PutUint32(bs, uint32(*v)) - case int32: - bs = b[:4] - order.PutUint32(bs, uint32(v)) - case []int32: - for i, x := range v { - order.PutUint32(bs[4*i:], uint32(x)) - } - case *uint32: - bs = b[:4] - order.PutUint32(bs, *v) - case uint32: - bs = b[:4] - order.PutUint32(bs, v) - case []uint32: - for i, x := range v { - order.PutUint32(bs[4*i:], x) - } - case *int64: - bs = b[:8] - order.PutUint64(bs, uint64(*v)) - case int64: - bs = b[:8] - order.PutUint64(bs, uint64(v)) - case []int64: - for i, x := range v { - order.PutUint64(bs[8*i:], uint64(x)) - } - case *uint64: - bs = b[:8] - order.PutUint64(bs, *v) - case uint64: - bs = b[:8] - order.PutUint64(bs, v) - case []uint64: - for i, x := range v { - order.PutUint64(bs[8*i:], x) - } - } - _, err := w.Write(bs) - return err - } - - // Fallback to reflect-based encoding. - v := reflect.Indirect(reflect.ValueOf(data)) - size := dataSize(v) - if size < 0 { - return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String()) - } - buf := make([]byte, size) - e := &encoder{order: order, buf: buf} - e.value(v) - _, err := w.Write(buf) - return err -} - -// Size returns how many bytes Write would generate to encode the value v, which -// must be a fixed-size value or a slice of fixed-size values, or a pointer to such data. -// If v is neither of these, Size returns -1. -func Size(v interface{}) int { - return dataSize(reflect.Indirect(reflect.ValueOf(v))) -} - -// dataSize returns the number of bytes the actual data represented by v occupies in memory. -// For compound structures, it sums the sizes of the elements. Thus, for instance, for a slice -// it returns the length of the slice times the element size and does not count the memory -// occupied by the header. If the type of v is not acceptable, dataSize returns -1. -func dataSize(v reflect.Value) int { - if v.Kind() == reflect.Slice { - if s := sizeof(v.Type().Elem()); s >= 0 { - return s * v.Len() - } - return -1 - } - return sizeof(v.Type()) -} - -// sizeof returns the size >= 0 of variables for the given type or -1 if the type is not acceptable. -func sizeof(t reflect.Type) int { - switch t.Kind() { - case reflect.Array: - if s := sizeof(t.Elem()); s >= 0 { - return s * t.Len() - } - - case reflect.Struct: - sum := 0 - for i, n := 0, t.NumField(); i < n; i++ { - s := sizeof(t.Field(i).Type) - if s < 0 { - return -1 - } - sum += s - } - return sum - - case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, - reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, - reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.Ptr: - return int(t.Size()) - } - - return -1 -} - -type coder struct { - order ByteOrder - buf []byte -} - -type decoder coder -type encoder coder - -func (d *decoder) uint8() uint8 { - x := d.buf[0] - d.buf = d.buf[1:] - return x -} - -func (e *encoder) uint8(x uint8) { - e.buf[0] = x - e.buf = e.buf[1:] -} - -func (d *decoder) uint16() uint16 { - x := d.order.Uint16(d.buf[0:2]) - d.buf = d.buf[2:] - return x -} - -func (e *encoder) uint16(x uint16) { - e.order.PutUint16(e.buf[0:2], x) - e.buf = e.buf[2:] -} - -func (d *decoder) uint32() uint32 { - x := d.order.Uint32(d.buf[0:4]) - d.buf = d.buf[4:] - return x -} - -func (e *encoder) uint32(x uint32) { - e.order.PutUint32(e.buf[0:4], x) - e.buf = e.buf[4:] -} - -func (d *decoder) uint64() uint64 { - x := d.order.Uint64(d.buf[0:8]) - d.buf = d.buf[8:] - return x -} - -func (e *encoder) uint64(x uint64) { - e.order.PutUint64(e.buf[0:8], x) - e.buf = e.buf[8:] -} - -func (d *decoder) int8() int8 { return int8(d.uint8()) } - -func (e *encoder) int8(x int8) { e.uint8(uint8(x)) } - -func (d *decoder) int16() int16 { return int16(d.uint16()) } - -func (e *encoder) int16(x int16) { e.uint16(uint16(x)) } - -func (d *decoder) int32() int32 { return int32(d.uint32()) } - -func (e *encoder) int32(x int32) { e.uint32(uint32(x)) } - -func (d *decoder) int64() int64 { return int64(d.uint64()) } - -func (e *encoder) int64(x int64) { e.uint64(uint64(x)) } - -func (d *decoder) value(v reflect.Value) { - switch v.Kind() { - case reflect.Array: - l := v.Len() - for i := 0; i < l; i++ { - d.value(v.Index(i)) - } - - case reflect.Struct: - t := v.Type() - l := v.NumField() - for i := 0; i < l; i++ { - // Note: Calling v.CanSet() below is an optimization. - // It would be sufficient to check the field name, - // but creating the StructField info for each field is - // costly (run "go test -bench=ReadStruct" and compare - // results when making changes to this code). - if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" { - d.value(v) - } else { - d.skip(v) - } - } - - case reflect.Slice: - l := v.Len() - for i := 0; i < l; i++ { - d.value(v.Index(i)) - } - - case reflect.Int8: - v.SetInt(int64(d.int8())) - case reflect.Int16: - v.SetInt(int64(d.int16())) - case reflect.Int32: - v.SetInt(int64(d.int32())) - case reflect.Int64: - v.SetInt(d.int64()) - - case reflect.Uint8: - v.SetUint(uint64(d.uint8())) - case reflect.Uint16: - v.SetUint(uint64(d.uint16())) - case reflect.Uint32: - v.SetUint(uint64(d.uint32())) - case reflect.Uint64: - v.SetUint(d.uint64()) - - case reflect.Float32: - v.SetFloat(float64(math.Float32frombits(d.uint32()))) - case reflect.Float64: - v.SetFloat(math.Float64frombits(d.uint64())) - - case reflect.Complex64: - v.SetComplex(complex( - float64(math.Float32frombits(d.uint32())), - float64(math.Float32frombits(d.uint32())), - )) - case reflect.Complex128: - v.SetComplex(complex( - math.Float64frombits(d.uint64()), - math.Float64frombits(d.uint64()), - )) - } -} - -func (e *encoder) value(v reflect.Value) { - switch v.Kind() { - case reflect.Array: - l := v.Len() - for i := 0; i < l; i++ { - e.value(v.Index(i)) - } - - case reflect.Struct: - t := v.Type() - l := v.NumField() - for i := 0; i < l; i++ { - // see comment for corresponding code in decoder.value() - if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" { - e.value(v) - } else { - e.skip(v) - } - } - - case reflect.Slice: - l := v.Len() - for i := 0; i < l; i++ { - e.value(v.Index(i)) - } - - case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: - switch v.Type().Kind() { - case reflect.Int8: - e.int8(int8(v.Int())) - case reflect.Int16: - e.int16(int16(v.Int())) - case reflect.Int32: - e.int32(int32(v.Int())) - case reflect.Int64: - e.int64(v.Int()) - } - - case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: - switch v.Type().Kind() { - case reflect.Uint8: - e.uint8(uint8(v.Uint())) - case reflect.Uint16: - e.uint16(uint16(v.Uint())) - case reflect.Uint32: - e.uint32(uint32(v.Uint())) - case reflect.Uint64: - e.uint64(v.Uint()) - } - - case reflect.Float32, reflect.Float64: - switch v.Type().Kind() { - case reflect.Float32: - e.uint32(math.Float32bits(float32(v.Float()))) - case reflect.Float64: - e.uint64(math.Float64bits(v.Float())) - } - - case reflect.Complex64, reflect.Complex128: - switch v.Type().Kind() { - case reflect.Complex64: - x := v.Complex() - e.uint32(math.Float32bits(float32(real(x)))) - e.uint32(math.Float32bits(float32(imag(x)))) - case reflect.Complex128: - x := v.Complex() - e.uint64(math.Float64bits(real(x))) - e.uint64(math.Float64bits(imag(x))) - } - } -} - -func (d *decoder) skip(v reflect.Value) { - d.buf = d.buf[dataSize(v):] -} - -func (e *encoder) skip(v reflect.Value) { - n := dataSize(v) - for i := range e.buf[0:n] { - e.buf[i] = 0 - } - e.buf = e.buf[n:] -} - -// intDataSize returns the size of the data required to represent the data when encoded. -// It returns zero if the type cannot be implemented by the fast path in Read or Write. -func intDataSize(data interface{}) int { - switch data := data.(type) { - case int8, *int8, *uint8: - return 1 - case []int8: - return len(data) - case []uint8: - return len(data) - case int16, *int16, *uint16: - return 2 - case []int16: - return 2 * len(data) - case []uint16: - return 2 * len(data) - case int32, *int32, *uint32: - return 4 - case []int32: - return 4 * len(data) - case []uint32: - return 4 * len(data) - case int64, *int64, *uint64: - return 8 - case []int64: - return 8 * len(data) - case []uint64: - return 8 * len(data) - } - return 0 -} diff --git a/process/process_freebsd.go b/process/process_freebsd.go index ab7f5da..bd5ff6b 100644 --- a/process/process_freebsd.go +++ b/process/process_freebsd.go @@ -185,7 +185,7 @@ func (p *Process) MemoryInfo() (*MemoryInfoStat, error) { if err != nil { return nil, err } - pageSize := binary.LittleEndian.Uint16([]byte(v)) + pageSize := common.LittleEndian.Uint16([]byte(v)) return &MemoryInfoStat{ RSS: uint64(k.KiRssize) * uint64(pageSize),